
1

A Fast Neighborhood Grouping Method for
Hyperspectral Band Selection

Qi Wang, Senior Member, IEEE, Qiang Li, and Xuelong Li, Fellow, IEEE

Abstract—Hyperspectral images can provide dozens to hun-
dreds of continuous spectral bands, so the richness of informa-
tion has been greatly improved. However, these bands lead to
increasing complexity of data processing, and the redundancy of
adjacent bands is large. Recently, although many band selection
methods have been proposed, this task is rarely handled through
the context information of the whole spectral bands. Moreover,
the scholars mainly focus on the different numbers of selected
bands to explain the influence by accuracy measures, neglecting
how many bands to choose is appropriate. To tackle these
issues, we propose a fast neighborhood grouping method for
hyperspectral band selection (FNGBS). The hyperspectral image
cube in space is partitioned into several groups using coarse-fine
strategy. By doing so, it effectively mines the context information
in a large spectrum range. Compared with most algorithms, the
proposed method can obtain the most relevant and informative
bands simultaneously as subset in accordance with two factors,
local density and information entropy. In addition, our method
can also automatically determine the minimum number of
recommended bands by determinantal point process. Extensive
experimental results on benchmark datasets demonstrate the
proposed FNGBS achieves satisfactory performance against state-
of-the-art algorithms.

Index Terms—Hyperspectral image, band selection, neighbor-
hood grouping, context information, determinantal point process.

I. INTRODUCTION

THE hyperspectral sensor captures the target region by
dozens to hundreds of consecutive spectral bands to ob-

tain hyperspectral image cube. It has the characteristics of high
resolution, large number of bands and large amount of data.
Compared with multispectral image, the hyperspectral image
not only has a great improvement in information richness, but
also provides the possibility of more reasonable and effective
analysis [1]. Therefore, it is widely used in ground object
detection and recognition [2], environmental monitoring [3],
disaster prediction [4], etc. Nevertheless, these bands also pose
some issues. For instance, a large number of hyperspectral data
increase the complexity of data processing. In addition, since
the range of each band of hyperspectral image is narrowed
and the spectrum is the same kind of wave in a certain range,
there is remarkable feature that high similarity exits among
adjacent bands [5] (see Fig. 1). It appears dimension disaster
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Fig. 1. The similarity for current band (band index 20) with other bands on
Salinas dataset.

phenomenon easily, affecting subsequent image processing
tasks. The above dilemmas are usually solved by reducing
the dimension of hyperspectral image data.

Band selection is regarded as an effective method for
hyperspectral dimensionality reduction. Without changing the
original hyperspectral data, it is to select a subset of bands
containing most of the structure and information from dozens
to hundreds of bands to remove some bands that are redundant
or cause interference [6], [7]. When performing band selection,
there are two principles to follow, that is, the selected bands
have a large amount of information and the similarity among
bands is small [8], [9]. By doing so, it can reduce the
dimension of hyperspectral image and retain enough object
information, which is more conducive to further image pro-
cessing.

In recent years, many unsupervised band selection al-
gorithms have been proposed. These methods are mainly
divided into two categories, clustering-based [10]–[13] and
ranking-based [14]–[17]. The clustering-based methods, e.g.,
fast density-peak-based clustering (E-FDPC) [10] and Ward’s
linkage strategy using divergence (WaLuDi) [11], treat each
band as a point, and build a similarity matrix by Euclidean
distance or other criteria. Using this matrix, some clustering
methods [18] are then adopted to cluster these bands into
groups so that the bands with high similarity are grouped into
one group. The most relevant band with other bands in each
cluster is finally selected as representative band [19], [20].
Unfortunately, this type of algorithms makes the similarity of
obtaining subset small, but the selected band do not necessarily
have the amount of information. Additionally, when perform-
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ing clustering algorithm, the hyperspectral bands are usually
considered to be unordered. It results in ignoring the context
information of the whole spectral bands.

For ranking-based method, typical methods have maximum-
variance principal component analysis (MVPCA) [15] and
linearly constrained minimum variance based on constrained
band selection (LCMV-CBS) [21]. This type of methods is
based on a certain criterion to calculate a score for each
hyperspectral band. The scores are then sorted by ascending
or descending order, and the bands corresponding to the
maximum or minimum score values are selected as the target
subset in terms of the meaning of the score value [22].
Although these methods have achieved satisfactory results,
they also have two shortcomings. First, these algorithms are
very sensitive to hyperspectral bands containing noises, which
makes that the selected band may have a strong similarity.
Second, most algorithms change the original information in
the hyperspectral image cube through spatial transformation,
which results in the loss of some key information.

With respect to the above descriptions, it can be concluded
that the hyperspectral bands should be viewed as ordered to
deal with. Moreover, without changing the original hyperspec-
tral image data, we can make use of the idea of ranking-
based method to obtain the relevant and informative bands in
each group. Importantly, when implementing band selection,
the number of selected bands is unknown. In most cases,
many scholars only pay attention to the different number of
selected bands to explain the impact of precision measurement,
ignoring how many bands to choose is appropriate [23], [24].
Therefore, this is one of the key issues that need to be solved
urgently for band selection. To tackle these issues, we propose
a fast neighborhood grouping method for hyperspectral band
selection (FNGBS). The main contributions are as follows:

1) Neighborhood band grouping is proposed to partition the
hyperspectral image cube into multiple groups in space. The
bands of high similarity in certain spectrum range are assigned
into one group via coarse-fine mechanism. It can fully mine
the context information of the whole spectral bands so as to
obtain the selected subset more dispersed.

2) The bands with the maximum product of local density
and information entropy in groups are selected as band subset.
Compared with most existing methods about selecting repre-
sentative band, our method can better exploit local distribution
characteristics and makes the obtained subset having more
discriminative bands simultaneously.

3) An automatic strategy is designed to obtain the minimum
number of recommended bands by determinantal point pro-
cess. Through analyzing the redundancy among band subsets,
we effectively reveal how many bands can be selected to get
approximately the same results as all bands.

The remainder of this paper is organized as follows. Section
II introduces two parts: ordered band partition and represen-
tative band selection. In Section III, the detailed descriptions
about our proposed method are presented, including neighbor-
hood bands grouping, maximum local density and informative
band, and recommended number of bands. After that, extensive
comparative experiments in Section IV are conducted on four
public hyperspectral datasets. Finally, conclusions are given in

Section V.

II. RELATED WORK

As introduced in Section I, it makes low similarity in
different groups by partitioning the hyperspectral image cube
in space. Then the representative band is selected from each
group by some evaluation criteria. Next, several representative
methods are listed and discussed.

A. Ordered Bands Partition

The principle of uniform band selection [25] is based on
the number of predetermined hyperspectral bands to evenly
partition hyperspectral image cube. This method is often
exploited to compare the performance of the proposed method.
Due to the lack of theoretical foundation, the effect is not good.
The hyperspectral data covers a wide range of spectral bands
from visible light to near infrared and then to far infrared,
some band selection methods [26] use this advantage to divide
hyperspectral image cube. For instance, the cube is divided
according to visible light (0.4-0.7 µm), near infrared (0.7-1.3
µm) and short infrared (1.3-2.5 µm). These methods have a
relatively reasonable theoretical basis, but it does not take into
account the impact of different scenes for data acquisition and
the relationship of the change of object type and the structure
of hyperspectral data.

Moreover, the researchers [23], [27] also propose automatic
subspace partition based on neighboring transmissible cor-
relation. Assuming that the local correlation of neighboring
bands has approximate continuity and transmissibility, the
correlation coefficients between any two bands are obtained.
Then, the curve is generated by applying the correlation of
adjacent bands. According to the curve, the local minimum
values are attained to partition hyperspectral image cube
into multiple groups. This treated way is extremely novel,
but there is a threshold that needs to be set, which affects
the outcome of subsequent processing. Furthermore, it only
considers the relationship between two adjacent bands, while
the influence of nearby bands is ignored. Based on this
significant hyperspectral feature, Wang et al. [28] employ
dynamic programming to segment hyperspectral image cube
in space. Compared with above methods, it achieves promising
performance.

B. Representative Band Selection

After dividing these bands, we need to select the most rep-
resentative band in each group. For clustering-based methods,
the band nearest to the cluster center is generally chosen as
the selected band. This way can obtain the most relevant band,
but it neglects the amount of information in the band, which
not conforms to the principles of band selection. Unlike the
above methods, some algorithms choose the informative band
in each group by quantifying the importance of each band to
obtain subset. In the following, several typical methods will
be briefly described.

Information divergence [25] in these unsupervised methods
is usually utilized to evaluate the recognition potential of each
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Fig. 2. Overall architecture of our proposed method.

band. It analyzes the difference of probability distribution in
each band through non-Gaussian measurement (KL divergence
[11] and kurtosis of probability distribution [29]), and acquires
the band with greatest difference as the most informative band.
Wang et al. [28] use three algorithms, MVPCA, E-FDPC, and
information entropy [30], to evaluate the bands in each group.
These methods either choose the most informative bands or
cluster centers to be a subset, which makes it impossible
for the selected subset to be discriminative and informative
simultaneously.

III. PROPOSED METHOD

In this section, we detail the proposed method (FNGBS),
whose flowchart is shown in Fig. 2. Specifically, based on
the fact that there is large similarity between current band
and adjacent bands, neighborhood band grouping is proposed
to partition hyperspectral image cube into multiple groups.
By calculating the two factors (local density and information
entropy) of band in groups, we choose the band with maximum
weight of the product of two factors in each group as band
subset. In addition, an automatic strategy is designed to obtain
the minimum number of recommended bands by determinantal
point processes. Three parts are described in detail in the
following sections.

A. Neighborhood Band Grouping

As we previously mentioned, the similarity between non-
adjacent bands is usually lower than that between adjacent
bands. Inspired by this phenomenon, we propose neighbor-
hood band grouping to divide the hyperspectral image cube
using coarse-fine strategy. Different from other algorithms, this
method only considers the influence of adjacent bands, which
can effectively reduce the execution time and fully mine the
context information of spectral bands.

Let X = {x1, x2, ..., xL} ∈ RN×L be the hyperspectral
image cube, where N represents the number of pixels in the
band, L is the total number of bands, and xi denotes the
vector of the i-th band. Supposing that M bands are selected
during band selection, the group number of bands also should
be set as M . For the hyperspectral image cube X , they are
first divided into M groups {X ′m}m=M

m=1 in space as evenly as
possible. Concretely, the partition point G is defined as

G(m) =


1, m = 1
(L− mod(L,M))×m

M
, 2 ≤ m ≤M − 1

L, m = M

,

(1)
where mod(·, ·) denotes mod operation. In terms of G, the
{X ′m}m=M

m=1 can be obtained by

X ′m = {xi}i=G(m+1)
i=G(m) , m = 1, 2, ...,M − 1. (2)

The result of this partition is a coarse band grouping, which
is similar to uniform band selection method.

Due to the lack of theoretical basis for the initial division
and the results are not ideal, we adopt fine neighborhood
grouping approach to repartition initial groups {X ′m}m=M

m=1 ,
thus obtaining more accurate grouping. The band xpm in the
groups {X ′m}m=M

m=1 is taken as the initial cluster center, which
is defined as

pm =

⌊
m× L

M
− L

2M

⌋
, m = 1, 2, ...,M , (3)

where m records that it currently belongs to the m-th group.
To speed up the execution of the algorithm and fully dig the
context information, for the current cluster center xpm

, we
only take into account these bands {xj}j=b

j=a. With respect to
a, b, they can be obtained by

(a, b) =

 [1, pm+1), m = 1
(pm−1, pm+1), 2 ≤ m ≤M − 1
(pm−1, L], m = M

. (4)

Next, we will detail fine partition algorithm. For more
description about this process, it is shown in Algorithm 1.
Through multiple iterations, the number of bands in each
group is no longer consistent. Finally, the bands of high
similarity are assigned to one group, which makes the low
redundancy between different groups. This way meets one of
the principles of band selection. An example to fine partition
the hyperspectral image cube is given in Fig. 3.

B. Maximum Local Density and Informative Band

After the hyperspectral bands have been separated into
groups, the groups are often treated independently. When
selecting the representative band in each group, the traditional
methods usually select the most relevant or informative band
in each group. However, this strategy makes representative
band may not be discriminative. To address this problem, an
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Algorithm 1 Process of fine partition algorithm
Input: Coarse band grouping for hyperspectral cube
{X ′m}m=M

m=1 . Number of iterations inter.
Output: Fine band grouping for hyperspectral cube
{Xm}m=M

m=1 .
1: Define R to record the similarity between the current band
xj and the cluster center xpm , and initialize the vectors R
to infinity. Define group label T and initialize it to zero.

2: A similarity matrix D is constructed by Euclidean dis-
tance, and the distance between cluster center xpm

and
current band xj is acquired.

3: If D(xpm , xj) < R(j), then set R(j) = D(xpm , xj) and
T (j) = m.

4: After vectors R and T are updated by Step 3, the value in
some groups is inconsistent due to the influence of factors,
such as noise. For example, group label T is [1, 1, 2, 1,
1, 2, 2, 2]. We process these outliers so that each group
has the same value.

5: Start new iteration by returning to Step 3 until the number
of iteration is reached or the group label T does not
change.

6: According to group label T , we select the maximum value
of the index in each group as the new partition point to
update G.

7: Obtain fine division of hyperspectral image cube Xm =

{xi}i=G(m+1)
i=G(m) .
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Fig. 3. An example to partition the hyperspectral image cube into six groups
by multiple iterations.

effective method is proposed to select the informative and most
relevant bands simultaneously. The basic idea is to rank the
bands in each group in accordance with the product of local
density and information entropy, and ensure that only one band
with maximum weight is selected. Here, we give the details
of the algorithm.

According to D, for a band xu, the distances between it
and other bands can be obtained and are arranged in ascending
order. The k nearest neighbor set [31] of band xu is defined
as follows:

kNN(xu) = {xv|D(xu, xv) ≤ duk}, (5)

where duk is the k-th distance for band xu. As can be seen
from kNN , it effectively reveals the distribution between each
band and other bands. In order to select representative band in
each group, shared nearest neighbor [32], [33] is introduced
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Fig. 4. Representative band by selecting the band corresponding to the
maximum of two factors in each group.

to describe the number of shared neighbor elements between
band xu and band xv , i.e.,

SNN(xu, xv) = |kNN(xu) ∩ kNN(xv)|, (6)

where ∩ denotes intersection for two bands. Shared nearest
neighbor indicates the similarity between band xu and k
neighbors in local space, which can show the band distribution
in space very well. In general, the larger this value is, the closer
the distribution of band xu and neighbor subset is.

Using the Eqs. (5) and (6), one of factors, local density, is
expressed as the ratio of two variables. Since the number of
bands is small in each group after partitioning the hyperspec-
tral image cube, if the ratio of two variables is directly adopted
to calculate the local density, this will cause statistical errors
[10]. Accordingly, in this paper, Gaussian kernel function is
used to accurately perform local density, i.e.,

ρu =
∑

xv∈kNN(xu)

exp

(
− D(xu, xv)

SNN(xu, xv) + 1

)
. (7)

Information entropy [34], [35] is a statistical form of feature,
reflecting the average amount of information in the image. To
make the selected bands having large amount of information,
the other factor Hu in each group is measured by calculating
information entropy, which is defined as

Hu = −
∑
z∈Ω

p(z) log p(z), (8)

where Ω denotes the grayscale space, and p(z) is the prob-
ability that an event z ∈ Ω appears in the image. It is
worth pointing out that the number of pixels N is usually
extremely large, and if all pixels are utilized to calculate
information entropy, the execution time of the algorithm will
be significantly increased. Consequently, in order to avoid the
case, we randomly pick Z pixels from N pixels (Z � N ) to
perform this operation. For the influence of the parameter Z,
we will analyze it in detail in the following experiments.

Through the above analysis, it can be concluded that when
both factors are the largest, the selected band will not only
satisfy the large amount of information, but also be more
representative (see Fig. 4). Note that the values of the two
factors do not have the same order of magnitude, their data
are normalized to the range of [0, 1] by

H = (H −Hmin)./(Hmax −Hmin), (9)
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ρ = (ρ− ρmin)./(ρmax − ρmin), (10)

where ./ denotes the element division operator, Hmin and
ρmin represent the minimum of vector H and ρ, and Hmax

and ρmax are the maximum of vector H and ρ. In addition,
when the number of bands in group is less than the parameter
k of nearest neighbor set, we only consider the amount of
information of the band because the other factor ρu has little
effect. Therefore, the weight wu of each band in group can be
denoted as

wu =

{
Hu × ρu, count(m) > k
Hu, otherwise

, (11)

where count(m) is the total number of bands in group.
According to Eq. (11), we pick the band with largest value
wu as the most relevant and informative band in each group
and thus obtain the band subset Y containing M bands.

C. Recommended Number of Bands

In most cases, the scholars focus on different numbers of
selected bands to explain the influence by accuracy measures,
neglecting how many bands to choose is appropriate. Consid-
ering this problem, we propose an automatic strategy to obtain
the minimum number of recommended bands by determinantal
point process (DPP) [36].

DPP often estimates the redundancy between data, which
is widely used in video summarization [37], [38]. To get
the minimum number of recommended bands whose results
approximately equal to the results of all the bands, DPP
is introduced to measure the redundancy of selected bands.
Actually, the aim of the minimum number of bands is to
determine inflection point. This point is the recommended
number of bands.

Suppose y is a subset of Y with M bands (y ⊆ Y , y 6= ∅),
the discrete probability of a subset y can be defined as

P (y) =
det(By)

det(B + I)
, (12)

where det(·) is the determinant operation, I is the identity
matrix, B = Y TY , and By denotes the submatrix obtained
by selecting the corresponding rows and columns from B
in accordance with y. Considering that only two bands are
selected, we have

P (y = {xu, xv}) ∝ BuuBvv −B2
uv. (13)

If two bands are exactly the same, P (y = {xu, xv}) = 0. It
indicates that the greater the similarity between bands is, the
smaller the probability value is. In addition, in terms of above
analysis. we can also acquire∑

y⊆Y
det(By) = det(B + I). (14)

In our paper, compared with other subsets (y 6= Y ), we
assume that the redundancy of the subset (y = Y ) contains
M bands is minimum. Therefore, the above solution can be
simplified to only calculate the redundancy of subset (y = Y ),
i.e.,

TABLE I
KEY INFORMATION ON FOUR PUBLIC DATASETS

Dataset Bands Size Classes Samples
Indian Pines 200 145 × 145 16 9323

Botswana 145 1476 × 256 14 3248
Pavia University 103 610 × 340 9 42776

Salinas 224 512 × 217 16 54129

P (y = Y ) =
det(By)

det(B+I)
. (15)

When the number of selected bands increases, overall, the
discrete probability P will decrease in that many redundant
bands are selected. Note that as the number of the selected
bands reaches a certain value, adding more bands in subset will
no longer significantly increase the redundancy. Hence, from
this point, we determine the critical point r (recommended
number) by the maximum change in the slope of the curve.
Owing to setting an assumption, the curve of discrete proba-
bility may not be smooth. In our work, a simple exponential
function is adopted to fit values of discrete probability to
obtain a smooth curve before determining the required number.
As a result, the discriminant condition of critical point is
expressed as follows:

QM−1
M = PM−1 − PM , (16)

r = arg max

(
QM−1

M

QM
M+1

)
, (17)

where PM is the discrete probability when selecting M bands.
Of course, we also add a condition (QM

M+1 > 0) to terminate
this computation. According to the above equations, a suitable
subset of the recommended bands is finally obtained from the
original bands.

IV. EXPERIMENT

The experimental section mainly includes three parts. First,
we briefly introduce four public hyperspectral datasets about
basic characteristics. Then, the experimental setup is presented
about classification setting, comparison methods, and number
of selected bands. Finally, extensive experiments are employed
to verify the effectiveness of our proposed method by different
dimensions.

A. Datasets

1) Indian Pines: The Indian Pines dataset1 was obtained
by AVIRIS sensor in Indiana. This dataset contains 224
spectral bands and the size of each band is 145×145 pixels.
Additionally, the ground truth consists of 16 classes (corn,
grass, soybean, etc.). Since some bands are covered by the
region of water absorption, we reduce these bands to finally
get 200 bands, as shown in Table I.

1http://www.ehu.eus/ccwintco/uploads/2/22/Indian pines.mat



6

TABLE II
CLASSIFICATION RESULTS BY SETTING DIFFERENT PARAMETERS ON INDIAN PINES DATASET USING SVM CLASSIFIER (%)

k Z 5 7 10 12 15 20 25 30 35 40 45 50

2

1% 63.26 71.70 74.95 74.94 76.60 78.99 81.80 80.88 81.40 82.24 82.01 81.28
10% 69.38 73.12 73.56 76.61 76.94 79.67 80.32 80.55 80.48 80.70 81.28 81.29
50% 68.88 73.35 75.08 76.31 77.13 80.12 81.40 81.22 81.38 82.03 82.43 81.39

100% 68.40 72.72 75.32 75.75 75.72 80.32 80.67 80.44 81.69 82.74 82.55 81.10

3

1% 64.40 72.59 77.00 75.36 76.75 80.91 80.76 80.16 81.52 81.03 82.09 81.89
10% 64.75 71.22 74.78 76.77 76.34 79.89 81.66 80.67 81.54 81.88 82.70 82.39
50% 63.27 71.20 74.70 75.21 76.49 79.38 79.82 79.48 81.68 82.37 81.96 81.36

100% 64.39 72.39 75.91 76.34 75.75 79.74 80.16 80.95 81.49 80.24 82.93 81.01

4

1% 63.42 72.15 74.93 76.76 76.33 79.60 80.81 81.22 80.79 82.16 82.08 82.40
10% 64.32 72.76 76.31 77.36 76.24 80.26 81.08 80.11 81.80 81.68 81.87 81.88
50% 63.58 70.49 75.25 77.21 76.52 80.49 80.11 80.32 80.79 81.68 82.21 82.52

100% 62.82 71.82 74.88 77.07 77.16 79.52 80.60 80.89 81.15 81.96 82.14 82.70

2) Botswana: The Botswana dataset2 was acquired by
NASA EO-1 satellite sensor over Okavango Delta, Botswana
in May 31, 2001. This hyperspectral image cube at 30m pixel
resolution has 242 bands covering the 400-2500 nm, and the
size of each band is 1476 × 256 pixels. Moreover, this dataset
contains 16 classes of land cover. Since water absorption and
other factors lead to some bands with large noises, some bands
are removed (10-55, 82-97, 102-119, 136-164, and 187-220)
and we finally get 145 bands for experimental verification in
our work. Table I displays some key information on Botswana
dataset.

3) Pavia University: The Pavia University dataset3 in 2002
was collected by ROSIS sensor during a flight campaign. The
hyperspectral image cube has 115 bands with the size of 610 ×
610 pixels. Unlike other datasets, this dataset discarded some
samples without information before further analysis. Finally,
the size of dataset becomes 610 × 340 pixels. Similar to
Botswana dataset, we remove some bands with low signal to
noise ratio and obtain 103 spectral bands with 9 classes (Table
I).

4) Salinas: The Salinas dataset4 was recorded by AVIRIS
sensor over Salinas Valley, California. The original image cube
has 224 spectral bands with the size of 512 × 217 pixels. The
dataset contains 16 classes of land cover including bare soils,
vegetables, etc. For this public hyperspectral dataset, we do
not remove the bands of water absorption, whose details are
described in Table I.

B. Experimental Setup

1) Classification Setting: In order to verify the quality of
obtained bands, two classifiers, k-nearest neighborhood (KNN)
[39] and support vector machine (SVM) [40], are adopted
to classify the samples on four public hyperspectral datasets.
In our experiments, two classifiers have the same parameter
settings on different datasets. Specifically, the parameter of
KNN classifier is set to be 5 for all classification validation
experiments. With respect to SVM classifier, the RBF kernel

2http://www.ehu.eus/ccwintco/uploads/7/72/Botswana.mat
3http://www.ehu.eus/ccwintco/uploads/e/e3/Pavia.mat
4http://www.ehu.eus/ccwintco/uploads/f/f1/Salinas.mat

is used, and the penalty C and gamma are initialized to 1×104

and 0.5, respectively.
Moreover, since the above two classifiers are supervised,

10% samples of selected bands are randomly picked as training
set, and the rest of samples are employed to implement
test task. Note that random selection of these samples will
make the classification results unstable. In order to eliminate
this effect, the final classification results are acquired by
calculating average value after running 5 times (except for the
section of parameter analysis). For all datasets, two methods
of classification accuracy measure are conducted to evaluate
the performance of algorithm, including overall accuracy (OA)
and average overall accuracy (AOA).

2) Comparison Methods: To demonstrate the superiority of
proposed method, four unsupervised band selection methods
are compared with our method in each dimension. They
are E-FDPC [10], WaLuDi [11], SNNC [8], and TOF [28].
Among these competitors, only SNNC has hyperparameter
to set, and the rest are parameter-free. For the competitor
SNNC, the hyperparameter is fixed at 5. Moreover, all bands
in hyperspectral dataset are also considered for performance
comparison.

3) Number of Selected Bands: When performing band
selection, how many bands to choose in practice is unknown.
Usually, different number of bands are set to analyze accuracy
through classifiers. In our experiment, we set the range of [5,
50] to verify the impact of the different numbers of band.

C. Results

To investigate the performance of the proposed method in
each dimension, in this paper, we will analyze it in detail
from the following points, including the impact of parameter
k and Z, recommended bands, classification performance, and
computational time.

1) Hyperparameter Analysis: In order to reduce the pro-
cessing time, Z pixels are randomly picked from N pix-
els when conducting the operation of information entropy.
Moreover, as the number of bands in group is less than
the parameter k of nearest neighbor set, we only consider
the effect of the factor H . In this section, we set different
parameters to study the impact on the performance of the
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TABLE III
CLASSIFICATION RESULTS BY SETTING DIFFERENT PARAMETERS ON BOTSWANA DATASET USING SVM CLASSIFIER (%)

k Z 5 7 10 12 15 20 25 30 35 40 45 50

2

1% 82.41 86.66 87.18 85.77 87.86 88.48 88.79 90.26 91.91 90.54 91.43 91.98
10% 82.62 85.60 86.25 86.46 86.94 87.53 89.89 90.50 90.74 90.82 91.53 90.30
50% 82.45 85.22 87.86 86.49 86.90 87.98 89.82 89.54 90.64 91.43 91.64 91.98

100% 82.33 86.08 87.04 87.18 87.32 87.35 89.13 89.93 91.53 91.85 92.15 92.73

3

1% 80.08 83.48 84.20 86.90 87.49 87.45 88.17 89.44 90.81 90.26 90.71 90.13
10% 80.29 85.46 85.43 85.98 85.77 88.65 89.41 90.16 91.53 90.81 90.78 91.12
50% 81.45 83.75 85.40 87.08 87.56 86.84 88.79 89.78 90.89 92.08 91.02 92.53

100% 79.91 84.23 84.81 86.36 87.25 87.52 89.37 90.20 91.43 89.85 90.61 91.22

4

1% 80.70 85.40 87.45 87.32 88.65 88.38 89.41 89.13 91.67 90.09 89.65 90.30
10% 80.77 85.09 87.28 87.04 88.03 87.28 86.73 89.17 91.67 90.20 92.15 90.92
50% 81.00 85.36 87.90 86.39 87.62 87.11 87.42 89.68 89.65 89.96 91.46 90.81

100% 81.83 85.64 86.49 86.77 87.87 87.39 90.06 89.06 92.01 91.16 91.57 90.85

proposed method when different number of bands are selected
(the range of [5, 50]). Specifically, as for parameter Z, 1%,
10%, 50%, and 100% of the pixels are picked from the original
pixels. With respect to parameter k, it is set to 2, 3, and 4,
respectively.

a) Indian Pines: The classification results about different
parameter values are depicted in Table II. It can be seen that
in this table these parameters greatly change the classification
results, particularly as for k. Experiment reveals the parameters
(k = 2 and Z = 10%) can better superior performance.
Therefore, in our work, we empirically set the parameters k
and Z to 2 and 10% (maybe it is not optimal), without any
further tuning parameters.

b) Botswana: Table III shows classification results by
setting different parameters on Botswana dataset using SVM
classifier. From this table, when the parameter k is fixed, the
parameter Z has little influence on classification accuracy. On
the contrary, it can be seen that setting different parameters
k displays considerable change, especially when selecting a
small number of bands. Overall, when the parameters k and Z
are set to 2 and 1%, respectively, the classification performance
is relatively good.

c) Pavia University: Likewise, we also set same param-
eters to analyze the impact on Pavia University dataset. Table
IV provides the classification accuracy of selecting different
bands. One can observe that no matter how many the param-
eter Z is set, there is little fluctuation in OA. However, the
classification results have significant impact on the selection of
5 bands. Compared with Botswana dataset, the classification
accuracy is not very different by setting several parameters k.
In general, the OA is basically consistent during k equals 3 or
4. Thus, for Pavia University dataset, the parameters k and Z
are determined to be 3 and 1% in our experiment, respectively.

d) Salinas: Similar to the OA results on Pavia University
dataset, Table V reveals that the best performance can be
achieved when k = 3 and Z = 1%. Through the above
analysis, it can be concluded that the values of two parameters
have little influence on the whole, except for Botswana dataset.

2) Efficiency Analysis of Each Part: With respect to the pro-
posed method, it mainly consists of two parts: neighborhood
band grouping and maximum local density and informative

band. To verify the efficiency of each part, we separate
two parts and conduct the experiment separately. Specifically,
without neighborhood band grouping, all the bands are viewed
as one group. According to Eq. (11), the product of local
density and information entropy for each band is calculated,
and they are ranked in descending order. The bands with larger
value are selected as a subset. This algorithm is named MLDIB
for ease of description. After conducting neighborhood band
grouping, one band is selected in each group. In order to
effectively illustrate the effectiveness of ranking step, E-FDPC
[10] is adopted instead of our ranking method. Similarly, the
method is named NBG E-FDPC. In addition, we combine the
two factors of E-FDPC (local density ρ and distance D) with
the two factors proposed in this paper (local density ρ and
information entropy H). To distinguish the local density in
the two methods, the local density in our paper is defined as
eρ. Finally, two competitors, NBG ρ H and NBG eρ D, are
added to the comparison algorithm.

Fig. 5 shows the results for different parts by SVM clas-
sifier on four datasets. As can be seen from the figure,
the performance of MLDIB is the worst and much lower
than that of FNGBS. This also shows that neighborhood
band grouping plays a key role in the algorithm, resulting
in a significant improvement in performance. With respect
to NBG E-FDPC, the measure of ranking proposed in this
study is superior to it. In our view, NBG E-FDPC uses E-
FDPC to ranking within each group. Although it can select
representative band, it ignores maximum informative band,
resulting in poor performance. As for the combinations about
two factors, the results of NBG eρ D is better than that of
NBG ρ H and NBG E-FDPC. It reveals the local density in
our work can effectively explore the distribution between each
band and other bands. When the combination of information
entropy and local density proposed in [10], the superiority of
its performance is not so obvious. Among these competitors,
we can notice that our method still maintains excellent per-
formance across different datasets. In particular, when a small
number of bands are selected, the advantage of our algorithm
is more clearer. To sum up, these two steps can significantly
improve the performance of the algorithm.
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TABLE IV
CLASSIFICATION RESULTS BY SETTING DIFFERENT PARAMETERS ON PAVIA UNIVERSITY DATASET USING SVM CLASSIFIER (%)

k Z 5 7 10 12 15 20 25 30 35 40 45 50

2

1% 80.57 85.65 85.20 89.69 89.83 90.29 93.02 93.35 93.16 93.34 93.46 93.81
10% 80.32 85.02 85.31 90.05 89.52 90.09 93.09 93.19 92.99 93.30 93.92 93.63
50% 81.32 85.19 85.48 89.81 89.82 90.28 93.08 93.39 93.20 93.48 93.80 93.71

100% 80.37 85.23 84.87 89.79 89.80 90.54 92.89 93.06 92.88 93.25 93.62 93.79

3

1% 82.39 84.09 86.63 89.54 91.71 92.46 93.22 93.21 93.17 93.63 93.52 93.65
10% 82.22 84.06 86.31 89.07 91.61 92.31 93.14 93.03 93.43 93.51 93.82 93.89
50% 82.12 84.09 86.31 89.33 92.04 92.19 93.06 93.12 93.32 93.68 93.87 93.58

100% 82.08 84.52 86.82 89.24 91.84 92.45 92.91 93.30 93.48 93.55 93.69 93.89

4

1% 81.39 84.04 85.68 89.16 91.15 92.02 93.03 92.83 93.76 94.01 94.00 93.65
10% 82.14 84.59 86.23 89.24 91.31 92.07 93.09 93.15 93.56 93.77 93.59 93.78
50% 81.05 85.18 86.11 89.24 91.20 92.10 93.11 93.40 93.44 93.38 93.57 93.89

100% 81.20 84.84 85.96 89.38 91.22 92.19 92.99 93.14 93.56 93.64 93.89 93.70

TABLE V
CLASSIFICATION RESULTS BY SETTING DIFFERENT PARAMETERS ON SALINAS DATASET USING SVM CLASSIFIER (%)

k Z 5 7 10 12 15 20 25 30 35 40 45 50

2

1% 88.12 88.24 90.77 91.39 91.28 91.79 92.05 92.09 92.29 92.45 92.41 92.66
10% 88.22 88.21 90.70 91.14 91.64 91.83 92.01 92.27 92.16 92.29 92.59 92.68
50% 87.69 88.30 90.89 91.35 91.56 91.79 91.99 92.15 92.05 92.39 92.30 92.64

100% 87.76 88.33 90.89 91.39 91.54 91.72 91.98 92.38 92.37 92.40 92.53 92.73

3

1% 87.91 89.25 91.01 90.93 91.71 91.85 91.81 92.07 92.24 92.45 92.73 92.70
10% 87.68 89.08 91.17 90.90 91.86 91.82 91.87 92.27 92.55 92.43 92.68 92.59
50% 87.92 89.21 90.88 91.21 91.77 91.81 91.98 92.10 92.54 92.58 92.67 92.51

100% 87.86 89.31 90.75 91.20 91.53 91.63 92.10 92.08 92.71 92.64 92.60 92.63

4

1% 87.76 89.46 91.06 91.26 91.69 91.55 91.76 92.23 92.31 92.35 92.76 92.57
10% 87.97 89.43 91.01 91.20 91.34 91.68 92.07 92.36 92.50 92.37 92.45 92.41
50% 88.06 89.40 91.11 91.30 91.23 91.63 92.16 92.19 92.52 92.38 92.59 92.58

100% 87.69 89.24 91.08 91.38 91.55 91.69 91.84 92.11 92.43 92.23 92.45 92.63
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Fig. 5. Classification results for different parts on four datasets. (a)-(d) Results by SVM classifier on Indian Pines, Botswana, Pavia University, and Salinas
dataset, respectively.

3) Recommended Bands Comparison: Aiming at how many
bands to choose in the process of band selection, the Eq. (17)
is used as the discriminant condition to obtain the minimum
number of recommended bands. Fig. 6 provides the number
of recommended bands on four datasets, as shown by red dot.
For four datasets, the number of recommended bands is 6, 8,
13, and 6, respectively. In this section, we will briefly analyze
recommended bands.

Hyperspectral image cube has a remarkable feature that
there is strong similarity among adjacent bands, which is
usually adopted to subjectively evaluate the quality of selected
bands. If many adjacent bands are acquired, it means that the
algorithm is poor and the classification results are low. For

four public datasets, the recommended bands by the proposed
FNGBS are displayed in Table VI. Similarly, according to the
number of bands recommended by the proposed method, we
also show the bands of other competitors in Table VI when
6, 8, 13, and 6 bands are selected on four datasets. Moreover,
the results of all competitors are ranked by ascending order.
From the comparison of numerical distribution, some bands
obtained by SNNC, E-FDPC, and WaLuDi are adjacent on
Pavia University dataset. Unlike this dataset, all methods can
avoid acquiring adjacent bands on Indian Pines and Botswana
datasets. For Salinas dataset, most bands selected by each
algorithm are the same or next to each other, which is
consistent with the above results in Fig. 10. In this condition,
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Fig. 6. Discrete probabilities of different band subsets. (a)-(d) Results on Indian Pines, Botswana, Pavia University, and Salinas dataset, respectively.

TABLE VI
SELECTED BANDS BY DIFFERENT BAND SELECTION METHODS ON FOUR

DATASETS

Dataset Method Selected bands

Indian Pines
(6 bands)

E-FDPC 28, 67, 83, 124, 167, 192
WaLuDi 50, 67, 83, 128, 163, 189
SNNC 28, 52, 67, 83, 124, 167
TOF 16, 28, 50, 67, 90, 173

FNGBS 28, 70, 92, 107, 129, 163

Botswana
(8 bands)

E-FDPC 11, 20, 53, 65, 92, 106, 126, 138
WaLuDi 2, 43, 50, 72, 92, 107, 116, 120
SNNC 11, 19, 42, 53, 65, 71, 96, 129
TOF 11, 20, 42, 53, 65, 92, 120, 128

FNGBS 10, 20, 40, 52, 64, 97, 107, 136

Pavia
University
(13 bands)

E-FDPC
19, 33, 37, 42, 50, 52, 54,

56, 61, 82, 90, 92, 99

WaLuDi
1, 9, 19, 23, 29, 33, 49,
61, 68, 72, 74, 78, 90

SNNC
18, 28, 33, 48, 54, 62, 81,
84, 89, 92, 100, 102, 103

TOF
4, 15, 19, 29, 33, 41, 48,

53, 61, 67, 79, 88, 99

FNGBS
4, 12, 14, 29, 37, 40, 46,

53, 64, 70, 80, 87, 93

Salinas
(6 bands)

E-FDPC 32, 55, 69, 88, 111, 185
WaLuDi 68, 90, 136, 155, 194, 218
SNNC 32, 53, 69, 90, 158, 184
TOF 11, 32, 55, 68, 88, 109

FNGBS 31, 55, 118, 126, 187, 212

FNGBS can select more dispersed subsets, which can not only
cover a large spectrum range, but also has high recognition
ability for objects on four datasets.

4) Classification Performance Comparison: In this section,
we evaluate the proposed approach from three aspects by two
classifiers, using four state-of-the-art methods. These includes
1) OA curves against different number of bands by two
classifiers; 2) OA bars with respect to a certain number of
bands; and 3) AOA bars about the range of 5 to 50 bands.

a) Indian Pines: The results about three aspects are
demonstrated in Fig. 7. According to the curve, it can be
concluded that our FNGBS can outperform better results in
every aspect. Correctly, compare with the results collected
by SVM classifier, all competitors except our method obtain
unstable accuracy curves in Fig. 7(a), particularly as for TOF
and WaLuDi. Moreover, the result (77%) for E-FDPC is

significantly lower than other approaches after the number of
bands exceeds 15 (see Fig. 7(b)). When 6 bands are selected,
our method has comparable OA with SNNC using SVM
classifier, but obviously superior to others. Through the above
description, that is enough to illustrate our approach achieves
superior performance over each dimension.

b) Botswana: Fig. 8 displays classification results by
selecting different number of bands on Botswana dataset.
Among all the competitors, our method achieves satisfactory
results when using KNN classifier. Importantly, FNGBS can
obtain stable results earlier than other competitors. With re-
spect to SVM classifier, the classification curves demonstrate
the classification accuracy increases with the increase of the
number of selected bands. Overall, FNGBS also yields best
performance than other methods. Unlike the results about
KNN classifier, E-FDPC provides poor results (82%), which
is about 5% lower than the classification accuracy of the
other four algorithms. The remaining three methods (WaLuDi,
SNNC, and TOF) can acquire better stable results on both
classifiers. Fig. 8(c) reveals the classification accuracy when 8
bands are chosen. In Fig. 8(c), the proposed method displays
a significant superiority.

c) Pavia University: In this experiment, two classifiers
are employed to classify these samples on Pavia University
dataset, whose classification results are exhibited in Fig. 9. It
can be observed that FNGBS has better performance when the
number of selected bands surpasses 15. As for KNN classifier,
the OA obtained by TOF and WaLuDi is about 3% lower
than that of the other three algorithms on the whole. Besides,
the results of SNNC, WaLuDi, and FNGBS even exceed the
classification results of all bands. When it comes to SVM
classifier, all competitors handle a small number of bands with
lower results. Compared with the results by KNN classifier,
WaLuDi and TOF display comparable performance to that of
other algorithms. It demonstrates that the bands obtained by
these two methods on this dataset are not very good. Fig. 9(c)
presents selecting 13 bands acquire OA by five algorithms.
Evidently, FNGBS attains approximately the same results as
E-FDPC, but is more accurate than the other three approaches.
In general, our method yields satisfactory classification results,
which is comparable to the latest band selection methods.

d) Salinas: Fig. 10 shows the results using two classifiers
on Salinas dataset. Different from the above two datasets, all
band selection algorithms achieve approximately the same OA.
However, our method can still better classify these samples,
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Fig. 7. Classification results by selecting different number of bands on Indian Pines dataset. (a) and (b) Results by KNN and SVM classifiers. (c) Results
about 6 bands. (d) Average classification results.
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Fig. 8. Classification results by selecting different number of bands on Botswana dataset. (a) and (b) Results by KNN and SVM classifiers. (c) Results about
8 bands. (d) Average classification results.
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Fig. 9. Classification results by setting different number of bands on Pavia University dataset. (a) and (b) Results by KNN and SVM classifiers. (c) Results
about 13 bands. (d) Average classification results.

but the difference is not very obvious. Fig 10(b) depicts that
all methods are still very far from the accuracy of all bands.
There are two main reasons for this issue. On one hand, this
dataset has 224 bands, and we only show the results of some
bands. On the other hand, for the four datasets, the parameters
of SVM are set to the same. As one can see from the figure’s
results, these parameters are not appropriate for the dataset. In
summary, we can draw some key conclusions that our method
attains excellent and stable performance on different datasets,
which demonstrates the proposed method is robust enough for
band selection.

5) Computational Time Comparison: In this section, in
order to evaluate the execution time of our proposed method,
all competitors are conducted in MATLAB 2016a using PC
workstation (Intel Core i5-3470 CPU processor and 16GB
RAM). Table VII only presents processing time for different
methods by selecting a certain number of bands on four
datasets. From the results of this table, one can notice that
WaLuDi yields very large execution time across different
datasets, and the remaining methods take less time to process.

Among these methods, only the running time of TOF will
increase as the increase of the number of selected bands. In
addition, two versions of the proposed method (1%, 100%
pixels are picked from the original pixels) about processing
time are displayed. Obviously, the time required to select part
of the pixels of the band to perform the band selection is
significantly small. Although our method is relatively time-
consuming than E-FDPC, it can achieve promising results in
classification performance and other aspects. To sum up, the
proposed algorithm not only can execute faster, but also can
yield better classification performance than others across four
datasets.

V. CONCLUSION

Considering that the context information of the spectral
information is rarely used for band selection, we propose a
fast neighborhood grouping method for hyperspectral band
selection (FNGBS), claiming the following contributions: 1)
neighborhood band grouping is proposed to divide the hy-
perspectral image cube so that it can fully dig the context
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Fig. 10. Classification results by selecting different number of bands on Salinas dataset. (a) and (b) Results by KNN and SVM classifiers. (c) Results about
6 bands. (d) Average classification results.

TABLE VII
EXECUTION TIME OF DIFFERENT METHODS BY SELECTING A CERTAIN NUMBER OF BANDS ON FOUR DATASETS (S)

Dataset E-FPDC WaLuDi SNNC TOF FNGBS (1%) FNGBS (100%)
Indian Pines

(6 bands)
0.121 7.430 0.4411 0.4165 0.2542 0.2995

Botswana
(8 bands)

0.661 99.281 3.738 1.843 0.892 3.442

Pavia University
(13 bands)

0.282 27.930 1.201 0.925 0.336 1.421

Salinas
(6 bands)

0.381 40.382 1.561 1.276 0.465 1.464

information of spectral bands; 2) the representatives with max-
imum weight of the product of local density and information
entropy are selected as band subset, which ensures band having
informative and most relevant in each group; 3) determinantal
point process is adopted to automatically determine how many
bands are selected to achieve results similar to all bands.
Extensive experiments on widely used benchmark datasets
demonstrate that our FNGBS attains better accuracy against
the state-of-the-art methods. In the future, we plan to study
how to reconstruct these bands after partitioned groups.
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